A History of Innovation

Scientific Cameras

Spectral Instruments has 20+ years’ experience customizing the design of and manufacturing cameras for high end imaging applications. The design of each camera is configured and hand tuned to get the most out of that top of the line CCD appropriate for your application. Thermoelectric and cryo-cooling technology is utilized to lower the temperature of the CCD to remove dark current from your images - resulting in an optimal instrument for detecting low photon flux. No other company is as well positioned to offer a cost effective custom solution for your scientific imaging and OEM needs.

SI Cameras

SI produces a number of camera product lines each of which can be customized with all scientific CCDs available today. The advantage to doing business with SI is you can select a CCD which suits your application for merits such as pixel size, physical size, number of ports or speed. The next step in determining an ideal camera is to select the camera model based primarily on cooling depth required for your application or selected CCD. Contact SI directly for quotes.
CCDs
The CCDs shown on the following page are a list of the most commonly used sensors available in our cameras. This is not a complete list, and only serves as a starting point for a customer to begin a dialog with us to find their optimal solution. Theoretically any CCD available can be installed into our cameras.

Optical wavelength detection applications
Any CCD in this table will provide high performance for imaging visible light photons. The best sensitivity will be found with those CCDs which can be had with backside illumination (all those listed with BI as an option).

Near Infrared detection
All silicon based sensors have trouble with wavelengths longer than 1µm, and one way CCD manufacturers have developed to get around this problem is to make the silicon thicker (thick epitaxial layer) and increase the absorption length for photons. CCDs with this feature are called ‘Deep Depletion’ devices (DD in our table) and are always found back illuminated. The process used to manufacture these devices requires them to be made as ‘non-MPP’ devices and thus have a large amount of dark current. SI has only installed these deep depletion devices into our coldest TE cameras (850S) or our cryo cameras (1110S) and we recommend this to prevent dark current from becoming a problem in your imaging.

UV detection
When applicable, SI can coat your sensor with a phosphor to ‘down convert’ your UV photons (down to 100nm) into visible light at the CCD. Talk with SI to find out if this strategy is right for your application.

High energy detection
SI has specialized in these cameras for many years by offering customized CCDs with no AR coating as well to bond fiber optics directly to the CCD itself. Some high energy photons and particles will permanently damage CCDs when they are absorbed, so fiber optics are used to prevent the absorption of this energy in the sensor. Placed at the interface of the fiber optic are down converting phosphors, or scintillators to create visible light detectible by the sensor directly.

- Fiber optics – tapers or faceplates are bound directly to the CCD to absorb damaging radiation in the glass rather than the CCD. One of our key innovations is in providing deeply cooled sensors bonded to fiber optics with little to no sacrifice in imaging resolution. Photon energy greater than 10keV is best suited to a camera with a phosphor or scintillator at the input to a fiber optic.

- Direct detection – energies less than 1keV are typically suited to backside CCDs with no AR coating and can also be used up to 10keV. Frontside CCDs are better suited for 1keV to 10keV, although damage to either type of CCDs occurs at all energies higher than 1keV so it is always best to use a fiber optic if possible.
CCDs

<table>
<thead>
<tr>
<th>Name</th>
<th>Ports</th>
<th>Pixel Size (µm)</th>
<th>Vertical</th>
<th>Horizontal</th>
<th>Megapixels</th>
<th>Size V (mm)</th>
<th>Size H (mm)</th>
<th>Cooling</th>
<th>Optimized for</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>e2v 290-99</td>
<td>16</td>
<td>10</td>
<td>9232</td>
<td>9216</td>
<td>85</td>
<td>92.32</td>
<td>92.16</td>
<td>Cryo</td>
<td>MS</td>
<td>PG, BI, DD</td>
</tr>
<tr>
<td>e2v 231-C6</td>
<td>4</td>
<td>15</td>
<td>6160</td>
<td>6144</td>
<td>37.8</td>
<td>92.4</td>
<td>92.2</td>
<td>Cryo</td>
<td>MS</td>
<td>PG, BI, DD</td>
</tr>
<tr>
<td>e2v 231-84</td>
<td>4</td>
<td>15</td>
<td>4112</td>
<td>4096</td>
<td>16.8</td>
<td>61.7</td>
<td>61.4</td>
<td>Cryo</td>
<td>MS</td>
<td>PG, BI, DD</td>
</tr>
<tr>
<td>STA 1600</td>
<td>16</td>
<td>9</td>
<td>10580</td>
<td>10560</td>
<td>111.7</td>
<td>95.2</td>
<td>95.1</td>
<td>Cryo, TE</td>
<td>MS</td>
<td>PG, BI, DD</td>
</tr>
<tr>
<td>STA 4150</td>
<td>4</td>
<td>15</td>
<td>4096</td>
<td>4096</td>
<td>16.8</td>
<td>61.7</td>
<td>61.4</td>
<td>Cryo, TE</td>
<td>MS</td>
<td>PG, BI, DD</td>
</tr>
<tr>
<td>e2v 230-84</td>
<td>4</td>
<td>15</td>
<td>4112</td>
<td>4096</td>
<td>16.8</td>
<td>61.7</td>
<td>61.4</td>
<td>Cryo, TE</td>
<td>HS</td>
<td>BI, DD</td>
</tr>
<tr>
<td>KAF 16801</td>
<td>1</td>
<td>9</td>
<td>4096</td>
<td>4096</td>
<td>16.8</td>
<td>36.88</td>
<td>36.88</td>
<td>TE</td>
<td>HS</td>
<td></td>
</tr>
<tr>
<td>STA 3700</td>
<td>16</td>
<td>16</td>
<td>1920</td>
<td>1920</td>
<td>3.7</td>
<td>30.7</td>
<td>30.7</td>
<td>Cryo, TE</td>
<td>HS</td>
<td>SpTr</td>
</tr>
<tr>
<td>KAF 4320</td>
<td>4</td>
<td>24</td>
<td>2085</td>
<td>2084</td>
<td>4.3</td>
<td>50</td>
<td>50</td>
<td>TE</td>
<td>HS</td>
<td></td>
</tr>
<tr>
<td>e2v 231-42</td>
<td>4</td>
<td>15</td>
<td>2064</td>
<td>2048</td>
<td>4.2</td>
<td>31</td>
<td>30.7</td>
<td>Cryo</td>
<td>MS</td>
<td>PG, BI, DD</td>
</tr>
<tr>
<td>e2v 230-42</td>
<td>4</td>
<td>15</td>
<td>2064</td>
<td>2048</td>
<td>4.2</td>
<td>31</td>
<td>30.7</td>
<td>Cryo, TE</td>
<td>HS</td>
<td>BI, DD</td>
</tr>
<tr>
<td>e2v 42-40</td>
<td>2</td>
<td>13.5</td>
<td>2048</td>
<td>2048</td>
<td>4.2</td>
<td>27.6</td>
<td>27.6</td>
<td>Cryo, TE</td>
<td>MS</td>
<td>BI, DD</td>
</tr>
<tr>
<td>e2v 47-20</td>
<td>2</td>
<td>13</td>
<td>1024</td>
<td>1024</td>
<td>1</td>
<td>13.3</td>
<td>13.3</td>
<td>Cryo, TE</td>
<td>HS</td>
<td>BI, DD, FTr</td>
</tr>
<tr>
<td>e2v 47-10</td>
<td>2</td>
<td>13</td>
<td>1024</td>
<td>1024</td>
<td>1</td>
<td>13.3</td>
<td>13.3</td>
<td>Cryo, TE</td>
<td>HS</td>
<td>BI, DD</td>
</tr>
</tbody>
</table>

Camera table

<table>
<thead>
<tr>
<th>SI Model</th>
<th>Cooling</th>
<th>Max Cooling °C</th>
<th>Typical Sensor Size</th>
<th>Interface</th>
<th>Max Ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>1110</td>
<td>Cryo</td>
<td>-110</td>
<td>XL-M</td>
<td>F, CL, E</td>
<td>16</td>
</tr>
<tr>
<td>1100</td>
<td>TE</td>
<td>-60</td>
<td>XL-M</td>
<td>F, CL, E*</td>
<td>4</td>
</tr>
<tr>
<td>850</td>
<td>TE</td>
<td>-90</td>
<td>L-S</td>
<td>F, E*</td>
<td>2</td>
</tr>
<tr>
<td>800</td>
<td>TE</td>
<td>-40</td>
<td>L-S</td>
<td>F, E*</td>
<td>4</td>
</tr>
<tr>
<td>1000</td>
<td>TE</td>
<td>-40</td>
<td>M-S</td>
<td>F, E*</td>
<td>1</td>
</tr>
<tr>
<td>900</td>
<td>Cryo</td>
<td>-110</td>
<td>XL-L</td>
<td>F</td>
<td>>16</td>
</tr>
<tr>
<td>1200</td>
<td>TE*</td>
<td>-30</td>
<td>M-S</td>
<td>F, E</td>
<td>2</td>
</tr>
</tbody>
</table>

- **XL**: 70+mm
- **L**: 50-70mm
- **M**: 20-50mm
- **S**: <20mm
- **F**: Proprietary FO
- **CL**: Camera link
- **E**: Native Ethernet
- **E***: Ethernet with adapter
- **TE**: Thermoelectric water cooled
- **Cryo**: Cryotiger
- **TE***: Thermoelectric air cooled

Options
- **PG**: Package options, see SI
- **BI**: Back-illuminated CCDs with custom AR coating
- **DD**: Deep depletion silicon available
- **SpTr**: Split frame transfer CCD
- **FTr**: Frame transfer CCD
- **MS**: Mid speed
- **HS**: High speed

Cooling
- **Cryo**: Cryogenically cooled
- **TE**: Thermoelectrically cooled
- **TE***: Thermoelectrically cooled with adapter
- **CL**: Camera link
- **E**: Native Ethernet
- **E***: Ethernet with adapter

Max Cooling °C
- XL: -110°C
- L: -60°C
- M: -40°C
- S: -30°C

Max Ports
- XL-M: >16
- L-S: 4
- M-S: 2

SI Model
- Custom OEM 1200
- Custom OEM 800
The table above demonstrates the energy and wavelength ranges best suited for each type of imaging solution offered by SI. All of our cameras can be configured for any of these ranges.

OEM capabilities
SI offers an unprecedented flexibility that our competitors do not. A precisely designed, manufactured and tuned camera from SI will give you an edge over your competition you cannot obtain anywhere else. No other company can provide this design capability at the low cost we can offer. Please contact us to see how our prompt support, leading edge design, and manufacturing capabilities can push your product development to new heights in performance and profitability.

New sensor development
Even as CMOS seems to be the “future” of high performance imaging, there are many other imaging domains and Spectral Instruments is actively pursuing those having satisfactory performance parameters for a variety of applications. From high-energy to very low as in X-Ray to Infra-red Spectral has on-going sensor research and development as a major company focus.